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“CODING FOR SPREAD~SPECTRUM CHANNELS

IN THE PRESENCE OF JAMMING" oY S# -

The long-term goals of this project are: a) a thorough analysis of the -]
problems involved in communicating reliably in the presence of hostile ]
jamming, and b) the design of effective "anti-jam" (A/J) countermeasures at }
the systems level, In the short-term, our research is presently focused on T
the detailed mathematical analyses of several specific A/J modulation and
coding strategies of our own design, which are applicable to modern spread-
spectrum communication systems,
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Our approach to this research has been, from the beginning, based on a
combination of Shannon’s Informgtion Theory and Von Neumann’s Ggme Theory.
The "game" involved is, of course, the conflict between the Communicator and
the Jammer; an important feature of our approach is the use of Shannon’s
Channel Capacity as the payoff function in the game. Since Channel Capacity
is convex-concave in just the right way, Von Neumann”s saddlepoint theorems
often allow us to calculate strategies for the Communicator and the Jammer
which are simultaneously optimal for both players. Channel Capacity,
according to Shannon, measures the maximum possible data rate in a communi-
cation system fully protected with error-control coding (ECC); this explains
the title of our study. However, Shannon’s Theorems about Channel Capacity
are all nonconstructive existence proofs, and so much of our research is
based on modern Algebraic Coding Theory, which might be called a "comstruc-
tive approach to Shannon’s theorems.”

Recently, our research has been focused on the A/J problem for non-

coherently modulated spread-spectrum frequency-hopped (SS/FH) systems. In -
particular, we have been studying the use of what we call pseudo~random .
ratio~threshold techniques (PRT) to combat jamming. Using techniques
borrowed from the calculus of variations, we have been able to identify the
worst-case jamming threat vs. PRT, and show that PRT’s performance is better
by several dB than conventional SS/FH systems. (This technique is descended
from a technique introduced by Viterbi in 1982, but our analyses show it to
be markedly superior in many applications.) This work will be reported in
our paper "A Study of Viterbi’s Ratio-Threshold AJ Technique," which has
been accepted by and will appear in the proceedings of MILCOM"84 (copy
attached).

DTG FILE copy

This genersl subject area is very active; the 1982 and 1983 MILCOM
(Military Communications Conference) Conference Proceedings are both filled
with papers in this same general area. Many of these papers are devoted to
the analysis of the performance of known A/J stategies vs. known jamming
threats. Our own work (as befits university research, perhaps) focuses on
more fundamentsal issues and innovative A/J strategies. However, we are
following the DOD and industrial research closely in order to maintain _
contact with the lstest technological advances. (For example: Viterbi’s -
1982 MILCOM paper led to our PRT technique, and the VHSIC program’s Reed- S
Solomon decoder has influenced our thinking sbout practical ECC in A/J
systems,) oo
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A Study of Viterbi’s Retio-Threshold AJ Techniqué

Li-Fung Chang and Robert J. McEliece

California Institute of Technology

Pasadens CA 91125.

Abstract

In this paper we study the performance of several
AJ systems based on Viterbi’s ratio-threshold technique
for FH/SS communications. Innovative features of our
work include the use of channel capacity as the figure
of merit, and the use of randomly varying thresholds.

1. Introduction

Recently Viterbi [1) introduced a new technique, which
he called a ratio threshold (R/T) technique, for com-
batting partial-band and tone jamming in an FH/SS
environment. This technique, which we will describe in
detail below, differs from most other AJ methods in that
it is able to provide its own ‘side information’ about the
current severity of the jamming threat. Roughly speak-
ing, it does this by setting a threshold and declaring
the jammer to be present unless the received signal ex-
ceeds the threshold. When the jammer is thus detected,
Jess weight is attached to the received symbols. Viterbi
showed that by using this technique, several dB of signal
power could be saved over a conventional ‘hard decision’
MFSK receiver. In this paper, we shall further analyse
the R/T technique, using channel capacity to optimise
the selection of threshold parameter vs. various jam-
ming threats.

In the remainder of this section, we will describe the
matbematical mode] which we use to analyse the ratio-
threshold technique, and give a game-theoretic formu-
Jation of our main problem. In Section 2, we we will an-
alyse the performance of the ratio- threshold technique
vs. the worst-case one-dimensional jammer. There we
will see that the best choice of the threshold varies with
the signal-to-noise ratio, and that for sufficiently small
SNR, the worst-case jammer is not one-dimensional, a
fact apparently not noticed by Viterbi. In section 3,
we introduce an innovation of our own — a randomly
varying threshold. We show that a random threshold is
1-2 dB superior to a fixed threshold vs. a worst-case

one-dimensional jammer. The random threshold has
the additional advantage of being more robust than the
fixed threshold, in that the AJ strategy does not depend
on the SNR. In section 4, we evaluate the performance
of the R/T technique vs. the worst case partial band
jammer. Our calculations show that the partial-band
jammer is almost as effective vs. the R/T technique as
is the less realistic worst-case one-dimensional jammer

1. 1 An Abstract Model

In this subsection we introduce a model for non-
coherent binary FSK modulation much like the one in
[2]. The ¢ransmitted signal is s two-dimensional vector
: X = (0,V2) or (VAA,0) with probability 1/2 each.
Without loss of generality, we assume X = (V/A,0)
represents 0, and X = (0,vA) represents ‘1. The
parameter ) represents the signal power, and also the
signal-noise ratio. since we assume by convention that
the jamming power is 1.

The jamming noise is a two-dimensional random
vector Z = (VZ;,VZ;) independent of X , and Z,,
2, are pon-pegative random varibles. We denote the
two-dimensional distribution function of Z by F(z2,, 1),
and assume the distribution function F is symmetric in
£,,83. The jammer is assumed to have average power
1. This assumption can be stated mathematically as
follows:

EZ,+&)=2. (1.1)

The received signal in our abstract model is a two-
dimensional random vector R = (R,, R;), where R; =
|1 X + Z:ef* ]}, X; and Z; are the components of X and
Z, and 4, are independent random phase angles, uni-
formly distributed on [0,2x] for s = 1,2. R; is supposed
to represent the output of the i-th energy detector of a
noncoherent binary FSK receiver. A hard-decision re-
ceiver chooses the largest R, and output the bit which
is represented by the largest R,.
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We now introduce Viterbi's threshold, a real sumber
> 1, which we denote by 0. The receiver tries to decide
whether ‘0’ or ‘1’ was transmitted, based on the received
vector (R,, R,), as follows:

¥ R, > #R;: Decision : 0’
¥ R; > #R;: Decision : 11°
Otberwise : Decision : 7*

where ‘T is an erasure symbol. With this rule, our com-
munication system becomes a binary errors and erasures
chantel, as depicted in Fig. 1. A simple calculation
shows that the capacity of this channel is given by

C = Pe Jog(2Pe/(Pe + Pc)) + Pe Yog(2Pc/(Pe + P(c))-)

1.2

This quantity depends on the signal-noise ratio A, the
threshold #, and the distribution of jammer’s power.
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»
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Fig. 1. The errors-and-erasures channel
1. 2 Problem Statement

We view this problem as 3 game with two players.
The first player, the Communicator, tries o maximise
the capacity C. He does this by selecting the threshold
#. The second player, the Jammer, tries to minimise C,
by carefully selecting bis energy distribution F. When
stated this way, the Communicator ve. Jammer prob-
Jem becomes a problem in game-theory, and there are
naturally two quantities of interest :

(a) The Communicator's Value of Capacity:

C = max n}in C(0; F;A)
{b) The Jammer's Value of Capacity:

Cy= ny'nm‘ax C(0; F; )
It is easy to see that C, < C;, but in general the two
values are unequal. In the remainder of this paper we
will confine our attention to the problem of calculating

C,, which is the largest capacity that the Communica-
for can guarantee himself against any jammer subject to
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(1.1). In the next section we will discuss the problem of

selecting the best threshold # vs. the restricted class of

one-dimensional jammers. As a corollary of our results, -
we will see that one-dimensional strategies are not op- |

timal for the jammer for small values of A, and we will
exhibit a class of two-dimensional jammers which are
superior to all one-dimensional jammers for sufficiently
small SNR’s. In section 3 we will see that improved (and
more robust) performance is possible if the threshold #
is allowed to be a random variable.

3. Performance of a Fixed Threshold

In this section and section 3, we will discuss the per-
formance of the R/T technique when the adversary is a
one-dimensional jammer. In this section we will assume
that the threshold # is fixed and known to the jammer.
In this case it is clear that the jammer needs only ex-
pend an energy of (A/€)* to cause an erasure, and an
energy of (A6)* to cause an errvor, provided that the
jammer's energy appears in the component of R oppo-

. site to that in which the signal appears. Hence in order

to calculate the minimimum over F that appears in the
definition of C,, it is sufficient to consider jammers that
assume only the three values 0, {A/8)*, and (A8)*. It is
a relatively simple matter to perform this minimisation,
using techniques of calculus. X we denote this minimum
by C(b; A), then the value C, is given by

C = max C(0;2).

This maximisation apparently can not be done in closed
form, but can easily be calculated numerically. We bave
graphed C,; as a function of A (curve (a)) in Fig. 2; curve
{b) in Fig. 2 is the channe} capacity with # = 1 (i.e.,
bard decision receiver.)
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Fig. 2. Performance of one dim. jammer
ve. (a) fixed # (b) # =1
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For small values of A, we see an interesting phe-
pomenon. The channel capacity is 1/2, not the expected
sero. This is disturbing, because it says that the jammer
cannot reduce the capacity below 1/2, no matter how
much of a power advantage be enjoys. On reflection, it
can be seen that this is » result of the one-dimensional
pature of the jammer’s strategy, since there will always
be a probability of 1/2 that the jammer will reinforce
the transmitted signal. Bence if the signaller’s threshold
is set to @ = oo, the channel of Fig. 1 becomes the binary
erasure channel of Fig. 8, which bas capacity 1/2 bits.
Indeed we find numerically that for all A < 6.12 dB,
the optimal threshold va. a worst case one-dimensional
jammer is # = 00. Of course what this shows is that
for small SNR’s the worst case jammer is certainly not
one-dimensional! In section 4, for example, we will see
that in the presence of the worst-case partial band jam-
mer, the channe] capacity of the R/T technique does

P ————

Theorem 1. Let the signal-noise ratio A be fixed. Sup-
pose the distribution function G(p) of the reciprocal
threshold p is convex U on [0,}]. Then the jamming
strategy which satisfies (1.1) and mipimises C assumes
at most two distinct values. There will be a critical value
of A, say A*, such that for A < A°, the optimal jammer
assumes only ope value, vis. £ = 1. For A > )*, the
optimal jammer assumes oply two values, one of which
is sero.

The class of thresholds considered in Theorem 1 is
very broad, and we have only investigated a small sub-
class of them in detail, vis. the distributions of the form
G(v) = ¢" for some real number n > 1. It is possible
to identify the best of these distributions.

Theorem 2. Among all threshold distributions of the
form G(¢) = ", the distribution with n = 1 is uni-
formly the best, for all n > 1.

approach 0 as A approaches 0.

172 :
o ° | In view of Theorem 2, it is worthwhile to investi-
: gate the performance of the n = 1 random threshold
vs. the corresponding worst case jammer (which can be
calculated with the belp of Theorem 1.). We plot this
? in Fig. 4, together with the two curves from Figure 3.
12 1.8 -
"l
1 172 1 I
Fig. 3. With # = o0, capacity equals 1/2 o
for all A
0L
8. Performance of a Random Ratio-Threshold ' "
In this section we will see what happens when the 0.2
threshold # is varied randomly by the Communicator. s
This possibility enlarges the set of strategies allowed to Y] ,__) A ., e
the Communicator. Whep dealing with varible thresh- T -5 0. s 10 15 0

olds, it is more convinient to deal with 1/ than with # 10l0g,12)
directly, and so we introduce the notation ¢ = 1/6.
Fig. 4. Performance of one dim. jammer

Ideally we would like to identify the best possible vs. (2) G(p) = ; (b) Best fixed 0; (c)
distribution of , vs. a jammer restricted only by (1.1). =1
Unfortunately, we have been unable to do this. How-
ever, we have identified a class of p distributions which
perform very well, compared to the fixed-threshold per-
formance discussed in section 2, above. As in section 2,
however, our analysis has so far been restricted to the
class of one-dimensional jammers. Our main result here
shows that for a wide class of random ratio-thresholds,
the worst case one-dimensional jammer assumes at most

two distinct values.

In Fig. 4, we see that this one particular distribu-
tion of threshold performs better than the best fixed
threshold scheme for all sufficiently Jarge A. Moreover,
the random thresbold strategy is the same for all values
of A, whereas the optimal fixed threshold varies with A.
We find this to be a very attractive feature of this AJ
strategy.
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;. Performance of Partial Band Jammer Theorem 8. If the signal-noise ratio A is cuﬁcienﬂf

In this section we describe the performance of the R/T small, and if we allow the tbreshold fo be a random
technique against a partial band noise jammer. That varible, thea among all pou.nble_ distribution function
i is, the jammer s a white stationary gaussian process of # against partial band noise jammer, § = 2 aitains
. with sero mean and two-sided spectral density No/2. maximum channel capacity.
3 It is well-known [3], that for a bard-decision receiver,
. if the jammer uniformly distributes his power over the Theorem 3 shows that # = 2 is uniformly the best
" entire spread bandwidth, then the resulting bit error for sufficiently small A. For larger values of A, the value
probability is : 1 of # that attains the maximum in equation (4.6) depends
Pe= ic"” (4.2) on A
Houston bhas shown [4] that the jammer can do much 1.0
3 better than this by distributing his power uniformly over
a fraction p, 0 € p < 1, of the total spread bandwidth
(the so-called partial band noise jammer with duty fac- L
tor p). Here R
= Lol
Pg - z (‘-2) ." L
» and the jammer will choose p to minimise P.. Letting
P¢ denote the minimum of (4.2), we have: )
o fle? Hag2 (p=1)
3¢ Sé
Pe = { /ex #A>2 (p=2/2). 49 0
In the R/T model, if the threshold # is fixed and known
to the partial band jammer, we have the following: [ X ] m
Pe= ; : - e+ (4.9) : " 10log,(\)
Fig. 5. Performance of worst-case par-
_ P e tial band jammer vs. (a) best fixed ¢
Pe=1-577¢ (45) (b)e=2(c)0=3
when # = 1, then equation (4.4) is the same as equation
(4.2), and the channel capacity is given by: 1.4 -
. . o
Ci(A) = max mip Cl(0:p;2) (4.6) wl
The minisation over p in equation (4.6) can be obtained B
by setting el
8C(0;p;7)/0p =0 (4.7) |
It is not possible o ind a closed form for the solution to S4r
equation (4.7) except for the case # = 1 (which is equa- o 3
tion(4.3)), but as before it can be calculated numeri- o2l 7
cally. Let us denote the minimum in (4.6) by C(6;)). ! '_
In Fig. § we bave graphed C(1;1) ,C(2;A) and Ci(A). - / ]
We see that in this case the R/T technique offers little 8.0 i n " ' 4
improvement. -1 5 '3 ] n 15 2 .
10log,,(0)

As ) approches sero, we bave the following interest- Fi
ing result, which shows that curves (a) and (b) in Figure 18- 6 Performance of n.vom-cne. (a)
§ are identical for small values of A: one dim. jammer (b) partial band jam-
' mer,vs. f =]
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Fig. 7. Performance of worst-case (a)
partial band jammer vs. best fixed #
(b)one-dim. jammer vs. G(p) = ¢

In Fig. 6 we plot the maximum channe] capacity vs.
one-dimensional jammer (curve (a)) and worst case par-
tial band jammer (curve(b)) against # = 1 (bard deci-
sions). Apparently the worst-case one-dimensional jam-
mer is 4-5 dB more powerful than the worst-case partial
band jammer. This problem is considerably improved
by our AJ system, as can be seen in Fig 7, where we
plot the channel capacity vs. a worst-case partial band
jammer against optimal fixed threshold (curve(a)) and
a worst-case one-dimensjonal jammer against 1/# unj-
formly distributed (curve(b)). Now the one-dimensional
jammer is only about 0.5 dB less favorable than the
worst-case partial band jammer.
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